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ABSTRACT

Let @ denote the class of hidden Z-matrices, i.e., M ¢ ¢ if and only if
there exist Z-matrices X and Y such that the following two conditions are
satisfied: |
(M1) MX = Y
(M2) rTx + sTY >0 for some r,s > 0 .

Let P denote the class of real square matrices having positive principal minors.
The class ¢ arises recently as a generalization of the class of Z-matrices (9],
(23], [24). 1In this paper, we explore various matrix-theoretic aspects of the

class cn P .

AMS (MOS) Subject Classification - 1502, 15A24, 15A45, 90C99

Key Words - Hidden Leontief, Hidden Z, Linear complementarity, Positivity of
principal minors,

Work Unit Number 2 - Matrix Theory

EXPLANATION
Matrix theory has been playing a very important role in the theory and appli-
cations of the linear complementarity problem. It is especially useful in the devel-
opment of efficient algorithms for solving large-scale linear complementarity problems.
Part of its usefulness is due to the fact that it allows the matrix structures which

might be inherent in the problems, to be exploited profitably. Among the classes of

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the
National Science Foundation under Grant No. MCS75-17335.
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matrices which arise from the various applications of the linear complementarity
problem is the class of K-matrices, i.e. real square matrices whose off-diagonal
entries are nonpositive (so-called Z-matrices) and whose principal minors are all
positive (so-called P-matrices). The class of K-matrices also plays very important
roles in other fields.

Recently, an extension of the class of Z-matrices, denoted by (¢ , was
introduced by Mangasarian who showed that a solution to a linear complementarity
problem with a matrix in C can be obtained, numerically, by solving a suitable
linear program. Mangasarian's result has later been refined by R. W. Cottle and
the author. The purpose of this paper is to explore various matrix-theoretic

aspects of matrices in ¢ which are P-matrices as well.
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HIDDEN Z-MATRICES WITH POSITIVE PRINCIPAL MINORS

Jong-Shi Pang

1. INTRODUCTION. The theory and applications of the linear complementarity problem with
a Z-matrix (i.e. a real square matrix whose off-diagonal entries are non-positive) have re-
ceived much attention in the literature [1], [16), [20), [27), [28), [31], [37), [41]). A
subclass of the class of Z-matrices, which is particularly important in the linear comple-
mentarity problem (and also in many other areas) is the class of K-matrices i.e. Z-matrices
that are also P-matrices (real square matrices having positive principal minors). The i)
theory and applications of the linear complementarity problem with a K-matrix have been
documented in many places in the literature [3), [5), 17), 18], [l1], [12]), [36]. A
major difference betwecen a linear complementarity problem with a Z-matrix and that with
a K-matrix is that the former problem is not always feasible; whereas the latter problem
always has a unique solution [12], [39].

Recently, an extension of the class of Z-matrices was introduced by Mangasarian
in his study of solving linear complementarity problems as linear programs. See [23],
[24]. This is the class ¢ of real square matrices M for which there exist Z-matrices
X and Y satisfying the following two conditions:
(M1) MX = Y
(M2) rTx + sTY >0 for some r,s z (1 20
Mangasarian's results in [23], (24] have been refined and extended by R. W. Cottle and
the author [9], [10), by Mangasarian himself [25] and by the author [33]). Some basic
properties of matrices belonging to ¢ have been obtained in [9]. It is clear that if M
is a Z-matrix, then M ¢ C . Several other classes of matrices belonging to C ‘are given
in [9], [25], (31], [32]. The class C appears to be a very appropriate generalization of
the class z', beca;se for one thing, many of the properties originally possessed by a 2z-
matrix are carried over to matrices in C . This is particularly true in the contexts of
the linear complementarity problem and of the Leontief substitution systems. See [34].

We propose to call matrices in C hidden Z-matrices. The word "hidden" is borrowed from

* The letters K, P and Z will also denote the corresponding classes of matrices.
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that in "hidden Leontief matrices." These hidden Leontief matrices were introduced by
Saigal [38) in his study of a generalized Leontief property of rectangular matrices. Re-
call that an nXm matrix A 1is said to be lLeontief ([14), [43])) if it has at most one
positive entry in each column and there is a vector x > 0 such that Ax > 0 . It is
clear that if M is a Z-matrix, then the matrix (I.MT) is Leontief. Slightly modify-

ing the definitions in [22], [38], we say that an nxm-matrix A is hidden Leontief if

there exists an nxn nonsingular matrix D such.that DA is Leontief. It has been
shown [34, Prop. 4.1] that if the matrix M is hidden 2, then the matrix (I,MT) is
hidden Leontief. The matrix (I,MT) arises naturally in the linear programming formula-
tion of a linear complementarity problem with a hidden Z-matrix M . See [34].

Numerous equivalent conditions under which a Z-matrix will become a K-matrix have
been surveyed in [17]. It is very natural to ask the question: What are some of the
matrix-theoretic pr&perties of the class of K-matrices that are carried over to the class
C n P? Therefore the purpose of this paper is to provide at least a partial answer to
this question by exploring various matrix-theoretic aspects of matrices belonging to
C n P . The essential result is a theorem which provides a necessary and sufficient
condition for a hidden Z-matrix to be a P-matrix. As an application of this characteri-
zation, we shall establish a representation theorem for matrices in ¢ n P and identify

several classes of matrices belonging to Cn P .
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THE CLASS C n P.

We start by explaining the notations and reviewing some facts to

4 nxm
be used later. We denote the class of all nXm real matrices by R . We denote
%X
the cardinality of a set S by |Sl . Let Me "™ and a,8 < {1,...,n} . We define
m o m
a8 8,8
Maﬂ = . .
m Shats m
ussl uset
where a = {ul,....us} and B = {81""'Bt} with 1 < @ < ... <a_<n and 1 f_jl <
Cie A jt <n . In particular, Mau is a principal submatrix of M . Similarly, if gq
is an n-vector, we define 9 (qa veserdy )T . Let M be a square matrix. By a
1 s

PTMP where

principal rearrangement of M, we mean a matrix M = P 1is a permutation

matrix. Clearly, the classes of K-, P- and Z-matrices are invariant under principal re-
arrangements. Moreover, the property of a matrix belonging to any one of the three
classes K, P and Z is inherited by each of its principal submatrices. Let A be a

nonsingular principal submatrix of a square matrix M . Let M be a principal rearrange-

A B

)

ment of M Cc D

such that M = ( Then the Schur complement of A in M, denoted by

3 ' -1
(M/A) is the matrix D - CA B .

Properties and applications of the Schur complements

have been surveyed in [4]). It has been proved [13] that if M is a K-matrix, then so

is called a principal pivot transform of M .

is every Schur complement in M . Let Mua be a nonsingular principal submatrix of a
" nx T Maa Mag
matrix M e R . Let P be a permutation matrix such that P MP = (M M ) where
& * T Ba BB
B=1{1,...,n} \a .. The matrix M = PM P where .
- -1
. & e -M_ M
aa aa aB
i 3 =3
M M M -M M M
Ba aa BB Ba aa af

*
The matrix M is obtained from M by

performing a block pivot on Huu .

transforms are well recognized in ma

been shown [6) that if M is a P-ma

forms. Note that every Schur cor

principal pivot transform of M .

Properties and applications of the principal pivot

thematical programming (2]}, [6], [19], [42]. It hLas

trix, then so is each of its principal pivot trans-
¢ in M appears as a principal submatrix of a
3=




A nonnegative matrix Q € i is said to be sub-stochastic if Qe < e where
e is the vector of 1's . Clearly, if Q is sub-stochastic, then the matrix I - Q € K .
A matrix M ¢ Rn)(n is said to be an S-matrix [18) if there exists a vector x > O such
that Mx > 0 . It has been shown that every P-matrix is an S-matrix [18] and that every
nxm

Z-matrix which is also an S-matrix is indeed a K-matrix [17). Let A € R be Leontief.

It is said to be totally Leontief if there exists a vector y > 0 such that yTA >0 .

X
Clearly, if M 1is a K-matrix, then the matrix (I,MT) is totally Leontief. Let Ac R m.

It is said to be hidden totally Leontief if there is an nxn nonsingular matrix D such

that DA is totally Leontief.
A pair of real square matrices (A,B) of the same order n is said to have the

[ -property if for any two complementary index sets a and B in {1,...,n}, the matrix

Auu Bas

A B
Ba BB
troduced recently by I. Kaneko [21] in his study of a special class of linear complemen-

( ) is in P . In particular, both A and B are in P . The k’-ptoperty was in-
tarity problems with applications to certain structural engineering problems. It is clear
that a matrix M is a P-matrix if and only if the paii of matrices (I,MT) has the
f -property.

We are now ready to establish our results. The first one is the main theorem
which provides a necessary and sufficient condition for a hidden Z-matrix to be a P-matrix.

The theorem generalizes the fact that a Z-matrix is in P if and only if it is an S-matrix.

X
Theorem J. Let Me Cn K . Then the following are equivalent:
(1) M is a P-matrix.
(2) M is an S-matrix.

Proof: (1) ® (2) . This is true regardless of what M is and has been mentioned above.
(2) #® (1) . This is the non-trivial part of the theorem and is of fundamental
importance throughout the paper. We use induction on n . The implication is obviously
true for n =1 . Suppose that it is true for all matrices of order < n . Consider a
matrix MeC n Rnx n which is an S-matrix as well. Let X and Y be Z-matrices sat-
isfying the defining conditions (Ml) and (M2). According to (9, Thm. 3.9], the matrix X

is nonsingular and the matrix (XT,YT) is Leontief. Since M is an S-matrix, there

exists a vector v € R such that Xv >0 and Yv > 0 . Since (xT,YT) is Leontief,
-4~




such a vector v must be positive (see [14]) e.g.). Hence, if a and B are any two com-
X X

plementary index sets in {1,...,n} , the matrix (Yua YGB) is in K . In particular, we
Ba "BB

have det X > 0 and det Y > 0 . Therefore det M > 0 . Thus it remains to show that

every proper principal submatrix of M has positive determinant. To prove this, it suf-
fices to show that if Mua is a proper principal submatrix of M, then Maa satisfies
the assumptions in the induction hypothesis. In other words, we need to show that

faf

M. e € n R‘Gl and there exists a vector y € R

such that y > 0 and M ¥y 0N e
aa aa

Since every principal rearrangement of M belongs to (¢ (with X and Y rearranged ac—
cordingly) and is obviously an S-matrix, we may assume, without loss of generality, that

Hua is a leading principal submatrix of M . Iet B8 = {1,...,n}\ a . We have

aa af xau xaﬁ = ‘yau YuB )

X
Ba g8
By an easy calculation, we may deduce

- -1 i, o -1
Moo Faa = %ag *pp xBa) * Yoo ~ Yar %pe %po

or equivalently,

(1) Mnu (x/xBB) = (N/XBB) |
where . |
Yua YuB |
w=1, X s
“Ba "BB

Since (X/XBB) and (w/xBB) are both K-matrices, it follows that Muu e ¢ . Finally,

4 since X 1is a K-matrix, we have

v
a
.(x/xBB)va = ((X/XBB)_ 0) vg
| X . X v
-1 aa  af a
= (I -X X ) >0 .
i bl " Ne IR

Similarly, we obtain

e

lw/xss)vu >0.
“Se
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let y = (X/XBB)VG' then
Mauy >0 and y >0 .

Therefore, Maa satisfies the assumptions in the induction hypothesis. This completes

the inductive step and also the proof of the theorem.
Corollary 1. If Me ¢ n P, then the matrix AT = (I,MT) is hidden totally Leontief.

Proof: 1In fact, if M satisfies conditions (Ml) and (M2) for Z-matrices X and Y, then
s ; : A L T y d
condition (2) is equivalent to the fact that the matrix (X ,Y ) = X A is totally Leontief.

The conclusion of the corollary is therefore an immediate consequence of Theorem 1.

If the P-matrix M satisfies conditions (Ml) and (M2) for Z-matrices X and Y,
the proof of Theorem 1 shows that the pair of matrices (XT,YT) has the (P -property. The
converse is also true and is contained in Proposition 1 below. The proposition generalizes

the fact that a P-matrix must necessarily be an S-matrix. The proof of the proposition

depends on the lemma below whose proof is omitted but can be found in [21}.

Lemma 1. (Kaneko [21]) Let (A,B) have the P -property. Then for every g and a > 0 ,

there exists a unique solution (:) to the problem:

(iia) w=4gqg+Av + Bx > 0 v>0

(1ib) ) z=a-v>0 x>0

(iic) wTv = sz =0

Proposition 1. Let X,Y ¢ Rn S . EE (xT,YT) has the [ -property, then there exists

a vector v such that Xv > 0 and Yv > 0 .

*
Proof : Suppose there exist no such vectors v . Then by Gordon's alternative theorem

on the feasibility of a homogeneous system of linear equations [15, Thm. 5, p. 136], it
follows that there exist nonnegative vectors r and s, not both vanishing such that

xTr + YTs =0 .

Let a = {i: 7 Y 0} and B = {1,...,n} \a. Then we have

* The author is grateful to Professor I. Kaneko and Mr. W. Hallman for some valuable
discussion on this proof.
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T T T T
(x )GBIB + (Y )uqsu + (Y )GBSB =0
which gives
T -1 T T -1 T

Bt =¥ )ua x )uBrB k¥ )an & )uBsB .

g
Therefore, the vector (s ) 1is a solution to the problem (ii) with q =0, a = rB 2

B
R, . 1 T SRS : y

A= (X )BB (Y )Ba (Y )aa (X )GB and B = (Y /(Y )ua) . Obviously, the zero vector is

also a solution to the same problem. It is not hard to verify that the pair of matrices

T T T
¥ e (X e J o\ [ o xD) g
T T-1 T i T 1 T T
0 X = (Y Y X 164 b b4 X
( )BB ( )BG ( )ua (X7) 8 ( )Bu( ) t ( )Bu ( )BB
and
s
T T T T
(Y )au (D¢ )“B ~ I 0 (Y )uu (Y )aB
T T Tl T T T -1 T T
- Xer) (") =
0 (Y )BB (Y )Ba( o aB (Y )Ba(y )aa I (Y )BG (Y )88
also has the @ -propert therefore so does the ir ((XT) - (YT) (\{T)-l (XT)
BLORCEEY s % = pa BB Ba aa aB '
T T T.~1 T ¥ o
(Y )BB - (Y )Bu (Y )ua (Y )(18 ). Thus according to.Lema 1, we conclude that rg =sg= 0.
Hence r = s = 0, which is a contradiction. This establishes the proposition.
Remark 1. The matrices X and Y in Proposition 1 are not required to be Z-matrices.

The following corollary follows immediately from Theorem 1.

X
Corollary 2. Let Me(C n Rn " If M satisfies either one of the following two

conditions, then M ¢ P :
(3) M > N for some S-matrix N;
(4) M >0 and M has no vanishing rows.

We now identify several classes of matrices belonging to C n P .

Corollary 3. Let Me RP ™ . If M satisfies any one of the following conditions then

MeCneP:
(5) M=Y + abT for some K-matrix Y and nonnegative vectors a and b ;
(6) M =2An - B for some 2-matrices A and B with B¢ K and A > B ;
-
. - A%, w * ‘v - e MA.:W




k .
i x - x
(7 M=1I+ Z a. A where A € Rn R is nonnegative and p(A) <1, 1 > a. > a,
Pt 1 bt R €

>0 for i=1,...,k-1 and 1 <k <» . If k ==, then it is required in

addition that p(A) < 3 where 5- is the radius of convergence of the scalar power

o
. i
series 2 (ST
: i
i=1
A . NN, :

(8) M=e, I+ sinh A, I +cosh A where A € R is nonnegative and p(A) < 1;
(9) M>0, p(M < %, 2M < (I—M)—l and M has no vanishing rows.
Proof: A matrix M satisfying any one of these conditions has been shown to be hidden 2.

For (5) and (6), see [9). For (7), (8) and (9), see [25]. A matrix M satisfying (5)
or (6) clearly satisfies (3). A matrix M satisfying (7), (8) or (9) clearly satisfies
(4). Therefore, by Corollary 2, we have M € P .

It is well-known that a matrix M is in class K if and only if M can be rep-
resented as

(iii) M=sI-P

where s > p(P) and P > 0 . In fact, this representation was used originally by
Ostrowski in defining K-matrices [30]. The following theorem generalizes this representa-

tion to the class Cn P .

Theorem 2. Let M€ Rnx 5 . The following are equivalent:
(10) MeCnP;
(11) M= (sll - Pl)(szl = I-"Z)-1 for some nonnegative matrices Pl and P2, positive

scalars s_ and s, which satisfy the condition below

n
(iv) 0 < (Pju, Pyu) < (s;u, s,u) for some ue€ R .

In particular, if M= (I - Pl)(I = Pz)_1 where P1 and P2 are sub-stochastic matrices

then Me C nP .

Proof: (10) = (11). Suppose Me C nP . Let X and Y be Z-matrices satisfying
conditions (M1) and (M2). By the proof of Corollary 1, it follows that there exists a
nonnegative vector u such that Xu > 0 and Yu > 0 . Therefore, applying the repre-

sentation (iii) to X and Y, we obtain (11) readily.




(11) = (10). Let X = 521 - P2 and Y = SII - P1 . Then (iv) implies that both

X and Y are K-matrices. 1In fact we have Xu > 0 and Yu > 0 . Therefore the matrix
-1
M= ¥YX € C . Moreover, with x = Xu, we have x >0 and Mx > 0 . Hence Me¢€e P .
The last conclusion of the theorem is obvious. This completes the proof of the

theorem.

Remark 2. If M has the representation (11), in particular, if condition (iv) is satis-
fied, then it follows that

(v) s, > p(P.) for i=1,2 , g
i i

or equivalently, both (sll = Pl) and (SZI = PZ) are K-matrices. Nevertheless, if both

Pl and P2 and non-vanishing, then condition (v) alone is not sufficient for M to be

a P-matrix. This is illustrated in the example below.

X 2 4 3
ik

4 2 ), s, =8 and s, =5 . It can easily be shown

Example 1. Let P1 = ( 1 2

that S5 >p(P,) for i =1,2. Nevertheless the matrix
i

= [ 3 - -4 - -1
M= (.,11 Pl)(s21 P2)

26 19

-8 -5)

= (
which must necessarily be hidden Z, is obviously not a P-matrix.

x
For A € Rn 2 . we define its companion matrix 7(A) = (m,.) € R by

i e =t sl o s s e i e

m..=|a,, i3 i3

11 11

Clearly, M (A) € z . The matrix A is said to be an H-matrix [30] if Q(A) ¢ K. A
short survey on H-matrices has been given in [35). See also [40]. It has been shown

[29) that the class of H-matrices includes those matrices that are strictly or irreducibly
diagonally dominant. Together with Corollary 3, the following proposition shows that

the class of H-matrices is a subclass of C n P .

Proposition 2. Let M ¢ anrx‘ Then the following are equivalent:
(12) M is an H-matrix.
(13) M satisfies condition (6).

(14) There exist Z-matrices A,B and C with A > C, B> C and C ¢ K such that

M=aA +B-C for some a > 1 .

-Qu




Moreover, if M satisfies any one of these conditions, then M e¢C n P .

Proof: (12) = (13). see [30].
(13) = (14). This is obvious.
(14) = (12). According to [17, Thm. 4.6), it suffices to show that 77 (M) > aC .
This follows readily if we write down the entries of 7(M) and apply the conditions on
A,B,C and «a .
The last conclusion of the proposition is an immediate consequence of Corollary 3.
This completes the proof of the theorem. *

The next example shows that the class of H-matrices is properly contained in

Cnp.
20 =202
Example 2. Let M=|-1 2 1} . Then M is a hidden Z-matrix because
=1 0 2

EN= =2 1 0 0 4 -2 0
=1 2 1 0 3 =1 = -2 2 ~-% .
-1 0 2 =1 0 1 -3 0 2

Nevertheless there exist no K-matrices A such that M > A . Indeed if A were such a

2 =2 =2
matrix, then we would have A < |[-1 2 le] . According to Corollary 2, this would
-1 0 2
2 -2 =2 2 =2 =2
imply that coh el 0 € K which is impossible because det| -1 2 0 =0 .
-1 (o} 2 -1 o 2

Therefore, in particular, M can not be an H-matrix. Moreover, this matrix M satisfies
none of the conditions (5)-(9) identified in Corollary 3.

It is well-known that if M is a K-matrix, then Mhl exists and is nonnegative.
Therefore M_l can not be a Z-matrix except in the trivial case where M is a positive
diagonal matrix. Nevertheless, M-l ¢ C nP . More generally, assertion (15) below

shows that the class @ n P is invariant under inversion.

Proposition 3. Let Me C n P . Then the following are true:
(15) The inverse of M belongs to Cn P .

(16) Every principal rearrangement of M belongs to C n P .
(17) Every principal submatrix of M belongs to ¢ n P .

(18) Every principal pivot transform of M belongs to C n P .

-10-




(19) Every Schur complement in M belongs to C n P .

Proof: -(15). This is obvious. Simply interchange the roles of X and Y . In fact,
this assertion is a special case of (18).

(16). This is also obyious.

(17). This is contained in the proof of Theorem 1. See (i) and (ii). 1

(18) and (19). These are immediate consequences of (16), (17) and the lemma below.

Lemma 2. Let Me C n P n "™ . Let, X and Y be Z-matrices satisfying (M1l) and

Maa MaB

Moo Mgg

mentary index sets in {1,...,n}. Let X and Y be partitioned into

(M2). Suppose M is partitioned into M = where a and B are two comple-

X [vy

xuu af aa aB
X = Y =
X Y Y
Y Ba Ygp
accordingly. Then
-1 -1
: M “Maa Mag Yoo Yap X Xag
(vi) 1 -1 : =
- M X X ¥ Y
MBa Moo MBB BaMaa MaB Ba BB Ba BB
Proof: We have
(Maa MGB ) xua an ¥ (Yua YaB)
X
Xsa *pe
or equivalently,
Maa xau - MaB xBa i Yua
Haa XGB + "aB xﬁﬂ = YGB .

R : -1 i .
Premultiplying Mau throughout these latter two equalities and rearranging terms, we
obtain

Y Y
. -1 -1 aa af
(vii) (M -M M =
aa aa o X X
&\ *oa ¥e8
Similarly, we have
«ile




(Mg, Mgg Xg, Xgg| = Yea Ygp

or equivalently,
M + =

Ba Xaa * Mg *ga Ba

+

Mea *Xag

Substituting the expression (vii) for (xau X ) into these latter two equalities and

af
rearranging terms, we obtain S
Y Y
-1 aa af
M, M (M/M_ ) = WY N )
Ba aa aa xBa xBG Ba " BB

This completes the proof of the lemma.

We conclude this paper by discussing a few points about nonnegative matrices M
whose inverses are K-matrices. Such matrices M certainly belong to C n P . The next
proposition shows that all principal submatrices and Schur complements of such matrices

M have inverses which are also K-matrices.

S n X =i : -
Proposition 4. Let Me R be such that M is a K-matrix. Then the following are

true:
(20) 1f Mau is a principal submatrix of M, then M;i € K ;
(21) 1f Mau is a principal submatrix of M, then (M/Maa )—1 € K . In particular,

(M/Mua ) is nonnegative.

Proof: In fact, we have MX = I where X = M-1 € K . Conclusion (20) follows from (i)
which gives Mcu (x/xBS ) = I and from the fact that (x/xBB ) ¢ K. Here B 1is the
complement of a in {1,...,n} . Similarly, conclusion (21) follows from (vi) which gives

‘"/Mua ))(BB = I . This completes the proof of the proposition.

Remark 3. As a matter of fact, the two equalities

nuu (X/%,,) = 1 and (H/Mau)x =1

BB B8

used in the proof of Proposition 4 are direct consequences of the following explicit form-

ula for the inverse of a matrix in partitioned form (see [4) e.g.): if

-12-




e .
O NG N4eimh 3 S S oo e | o s SRS 3 1

A B
W= z
c D
then
e W/t - tsw/a) 7}
yoe -1 o -1 .
-D "C(w/D) (W/D)

Remark 4. Markham [26] showed that if M e R" " is such that M-l € K, then M;i € K

for every a of order n - 1 . Conclusion (20) is a generalization as well as a consequence
of this result.

The condition that each of the proper principal submatrix of a matrix M has an
inverse which is a K-matrix is not sufficient for M-l itself to be a K-matrix even when

M is nonregative and a P-matrix. This is illustrated by the following example:

=
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